Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

نویسندگان

  • Drago Strle
  • Uros Nahtigal
  • Graciele Batistell
  • Vincent Chi Zhang
  • Erwin Ofner
  • Andrea Fant
  • Johannes Sturm
چکیده

This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Color recognition sensor in standard CMOS technology

Two integrated color detectors are presented as a solution for low cost color sensing applications. The color detection is based on lateral carrier diffusion and wavelength-dependent absorption-depth. The proposed detectors are implemented in a standard 130 nm CMOS technology without process modification or color filters. Three independent output signals are obtained with spectral responsivitie...

متن کامل

High Sensitivity Color CMOS Image Sensor with WRGB Color Filter Array and Color Separation Process Using Edge Detection

We have developed a CMOS image sensor with a novel color filter array (CFA) where one of the green pixels of the Bayer pattern was replaced with a white pixel. A transparent layer has been fabricated on the white pixel instead of a color filter to realize over 95% transmission for visible light with wavelengths of 400-700 nm. Pixel pitch of the device was 3.3 um and the number of pixels was 2 m...

متن کامل

Monolithic Integration of Electronics and Sub-wavelength Metal Optics in Deep Submicron CMOS Technology

The structures that can be implemented and the materials that are used in complementary metal-oxide semiconductor (CMOS) integrated circuit (IC) technology are optimized for electronic performance. However, they are also suitable for manipulating and detecting optical signals. In this paper, we show that while CMOS scaling trends are motivated by improved electronic performance, they are also c...

متن کامل

A 12 bit 76MS/s SAR ADC with a Capacitor Merged Technique in 0.18µm CMOS Technology

A new high-resolution and high-speed fully differential Successive Approximation Register (SAR) Analog to Digital Converter (ADC) based on Capacitor Merged Technique is presented in this paper. The main purposes of the proposed idea are to achieve high-resolution and high-speed SAR ADC simultaneously as well. It is noteworthy that, exerting the suggested method the total capacitance and the rat...

متن کامل

High Frame-rate TCSPC-FLIM Using a Novel SPAD-based Image Sensor

Imaging techniques based on time-correlated single photon counting (TCSPC), such as fluorescence lifetime imaging microscopy (FLIM), rely on fast single-photon detectors as well as timing electronics in the form of time-to-digital or time-to-analog converters. Conventional systems rely on stand-alone or small arrays (up to 32) of detectors and external timing and memory modules. We recently dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015